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Clebsch-Gordan coefficients and Racah coefficients for the 
SU(2) and SU(1,l) groups as the discrete analogues of the 
Poschl-Teller potential wavefunctions 

Yu F Smimov, S K Suslov and A M Shirokov 
Institute of Nuclear Physics, Moscow State University, Moscow 117234, USSR 

Received 5 December 1983 

Abstract. The Clebsch-Gordan coefficients ( C G C )  and the Racah coefficients for the SU(2) 
and SU(I, 1) groups are studied as functions of a discrete variable. It has been shown that 
CGC for SU(2) and SU(I, 1) groups may be considered to be discrete analogues of 
wavefunctions for the one-dimensional Schrodinger equation with the Poschl-Teller poten- 
tial. Expressions for CGC and 6j-symbols of the SU( I ,  1 )  group have been found through 
the Hahn and Racah polynomials. Consideration is given to the asymptotic properties of 
eigenvalues and eigenfunctions of the Hamiltonian of an asymmetric top and of the 
Bargmann-Moshinsky operator n. 

1. Introduction 

The basic quantities of the quantum theory of angular momenta, the Clebsch-Gordon 
coefficients (CGC) and the Wigner 6j-symbols, are frequently used in various problems 
of theoretical and mathematical physics and group representation theory (it will be 
sufficient to mention the problems of atomic and nuclear spectroscopy, the SU(2) group 
representations, and the special functions). Therefore, the properties of these quantities 
have been rather well studied ; numerous mathematical and physical works are devoted 
to studying their theory (see e.g. Gelfand et a1 1958, Vilenkin 1965a, Smorodinsky and 
Shelepin 1972, Varshalovich et al 1975, Jucys and Bandzaitis 1977, Sviridov and Smirnov 
1977). 

Until recently, however, the deep relationships between CGC and Wigner 6j-symbols 
of the SU(2) group on the one hand and the classical orthogonal polynomials of a 
discrete variable (Hahn 1949, Weber and Erdelyi 1952, Bateman and Erdelyi 1953, 
Karlin and McGregor 1961, Nikiforov and Uvarov 1978, 1983, Askey and Wilson 1979, 
Wilson 1980, Nikiforov et a1 1982) on the other hand passed unnoticed. The CGC of 
the SU(2) group proved to be expressible through the Hahn polynomials (Gelfand et 
a1 1958, Ryvkin 1959, Meckler 1959, Kirichenko and Stepanovsky 1974, Koornwinder 
1981, Smorodinsky and Suslov 1982a, Nikiforov and Suslov 1982, Nikiforov et a1 
1983a) which are discrete analogues of the Jacobi polynomials on a grid with a constant 
step. A similar result has been obtained for the Wigner 6j-symbols. They may be 
identified with the Racah polynomials (Wilson 1980, Nikiforov et a1 1983a, 
Smorodinsky and Suslov 1982b, Suslov 1983) which are the discrete analogues of the 
Jacobi polynomials on a quadratic grid (Nikiforov et al 1982). Thus, the vector coupling 
coefficients and the 6j-symbols have found their place as discrete analogues of the 
Jacobi polynomials in the theory of special functions. 
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From such a viewpoint, the orthogonality property, the difference equations, the 
Rodrigues formula, the recurrence relations, the asymptotics, etc are natural. The 
character of the CGC and 6j-symbol behaviour as the parameters vary and the nature 
of the additional selection rules relevant to the roots of these quantities (Smorodinsky 
and Suslov 1982a, b) become clear. Thereby, the quantum theory of angular momentum 
gets even more complete and  logically consistent. 

The present work continues the study of CGC as functions of a discrete variable. 
In 5 2 it is shown that CGC of the SU(2) and SU(1, 1) groups may be considered as 
discrete analogues of wavefunctions for the one-dimensional Schrodinger equation 
with the Poschl-Teller potential. After that, the SU(2) group results (Ryvkin 1959, 
Meckler 1959, Kirichenko and Stepanovsky 1974, Koornwinder 198 1, Smorodinsky 
and Suslov 1982a, b, Nikiforov and Suslov 1982, Nikiforov et a1 1983a, b, Suslov 1983) 
are generalised for the Kronecker product of two unitary irreducible representations 
belonging to the discrete positive series of the SU(1, 1) group. In 05 3 and  4 the explicit 
expressions for CGC and  6j-symbols of the SU( 1, I )  group will be found through the 
Hahn and  Racah polynomials respectively. Asymptotic formulae of the second order 
of accuracy are obtained for the above-mentioned quantities (analogous formulae for 
the SU(2) group are presented by Nikiforov et a1 (1983b)). Section 5 deals with the 
asymptotic properties of the eigenvalues and eigenfunctions of the Hamiltonian of the 
asymmetric top  and of the Bargmann-Moshinsky operator (Bargmann and Mosh- 
insky 1961) in the limit of large angular momentum. The relationships of the generalised 
spherical functions for the discrete positive series of the SU( 1, 1) group to the Meixner 
polynomials and the standardisation of the Hahn and Racah polynomials are noted 
in appendices 1 and 2. 

2. Clebsch-Gordan coefficients as discrete analogues of the Poschl-Teller potential 
wavefunctions 

must be the eigenfunction for the operator J 2  = J - J ,  + J i  +Jo ( J  = Ji( 1) +J,(2)) with 
eigenvalue j(j + 1) = -A. 

Let us begin with examining GCG for the SU(2) group. Since -j, G m l  S j t ,  - j2  G 

m2 s j2,  -j s m s j ,  after introducing the designations C, = (- l)’l-mi(jl m ,  j2m2bm), n = 
j, - m , ,  we may rewrite (2.1) as a second-order difference equation: 

- c,, + , [(n + 1 ) ( m  + m‘ + N - n - 1 ) ( m  - m’ + n + 1 )(N - n - 1 )]I/’ 

- ~ , - , [ n ( m  + m ’ + N - n ) ( N - n ) ( m  - m ‘ ~ n ) ] ’ ’ ~  

= C,[A +&N + m + m’)* + $ N  + m - m’>’- f  + f m 2  - f ( N  - 2n + m ‘ -  
(2.3) 
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Assume now that m 3 m' = j ,  - j ,  3 0,  N = j ,  + j z  + 1 - m. Then (2.3) should be solved 
at the boundary conditions 

c-, = CN = o .  (2.4) 

As was shown by Nikiforov and Suslov (1982), the solutions (2.4) are proportional to 
the Hahn polynomials which constitute one of the types of the orthogonal polynomials 
of a discrete variable. 

Difference equations are known to have much in common with differential equations 
of the same order. To have a general idea of the character of the solutions of the 
difference equation, it is helpful to use the limit n >> 1 when the discrete variable may 
approximately be considered as continuous, and the difference equation (2.3) may be 
replaced by an asymptotic differential equation. Consider, therefore, the case j , ,  j ,  >> m, 
m' ,  j (this means that n, N - n >> m, m' ,  j )  and produce the expansion of the left-hand 
side of (2.3) in a power series with respect to l / n  and  1 / ( N  - n), retaining the terms 
not above second order. By introducing the variable 0 related to n as 

(cos e) '= n /  N = ( j ,  - m , ) / ( j ,  + j 2 -  m + I )  

we obtain that (2.3) turns, in the above-mentioned approximation, into the following 
equation for four-dimensional spherical functions (Vilenkin 1965a, Smirnov and Shus- 
tov 1981): 

with boundary conditions C(0 = 0) = C(e = 7r/2) = 0;  hence it follows that in this 
extreme case CGC turn into Jacobi polynomials 

This is also in agreement with the limiting form of the Hahn polynomials (Nikiforov 
and Suslov 1982). The Jacobi polynomials may be related to the Wigner D-function 
through the replacement 6 = p / 2 .  As a result we obtain the well known relation 

( j~ml j2m21 jm) ( - l~ i -mi  = dJ,Ji-,,(cos p )  constant (2.6) 

(where cos p = ( m 2  - m,  + j ,  - j2  - I ) / ( j ,  + j z -  m + 1)) which makes it possible to treat 
CGC for the SU(2) group as a discrete analogue for the D-function or four-dimensional 
spherical harmonic YLL, Lg( 0) of the O(4) group, where L = 2j,  L ,  = m + m',  L2 = m - m'. 
The tree graphs characterising the coupling scheme of several angular momenta were 
used by Kuznetsov and  Smorodinsky (1975) and  Smirnov and  Shitikova (1977). Each 
branching of the tree graph shown in figure I(a) is in correspondence with the CGC 

( j , m ,  j2m2bm). On the other hand, the structure of hyperspherical harmonics is also 
given by a tree graph (Vilenkin 1965a, b, Vilenkin et a1 1965, Kildyushov 1972, Smirnov 
and Shustov 1981) containing elements ( b ) ,  (c) (see figure I ) .  The above examination 
shows that the two kinds of tree graphs (the Wigner tree and  the hyperspherical tree) 
are not only alike in their geometric structure but also interrelated closely in essence, 
namely in the asymptotic extreme j , ,  j ,  >> m, m', j the branching of the type of figure 
l(a) turns into branching I(b) with L ,  = m,  + m 2 + j ,  - j 2 ,  L 2 =  m,  +m2- j ,  +j2,  L = 2 j .  
In the particular case m'= j ,  - j 2  = 0 the branching I(a) turns out to be the branching 
I(c) (the Jacobi polynomial turns out to be the associated Legendre polynomial of 
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Figure 1. 

polar angle O S  p s n, while YLLIL2(0) becomes a standard three-dimensional spherical 
function ym(p)). 

Turning from the function C(0) to the function 

wLLl,+(e) = (sin e cos e)'/'c(e) = [ n ( ~  - n)/ N~] ' / ' c , ,  

we reduce (2.5) to the form of the one-dimensional Schrodinger equation 

-- 

where A ,  = m - m ' + f ,  A 2  = m + m ' + $ ,  E = (2j  + 1)2.  
It is seen from the above that the CGC may be treated as a discrete analogue of 

the wavefunctions for the Poschl-Teller potential. The spectrum of the levels of this 
potential is known to be of the form (Fliigge 1971) 

E = ( A ,  + A 2 + 2 k + 2 ) 2 ,  k = 0 ,  1 , 2 , . .  . .  (2.8) 
This means that j takes the values j = m, m + 1, .  . . . At a fixed m these values are 
allowed in the angular momentum theory. The difference between the asymptotic and 
accurate results is that the number of levels in the Poschl-Teller potential is infinite, 
whereas the values of j in the CGC ( j lmlj2m2bm) are limited by m SjSj, +j2. This 
difference is due to the fact that in the region j - j, +j2 = N + m  - 1 the asymptotic 
conditions are not satisfied, the variable n cannot already be considered continuous, 
and the asymptotic equation is inapplicable. Therefore, the spectrum of the difference 
equation (2.3) will contain a finite number of eigenvalues A, in contrast to the spectrum 
of (2.7). At small values of j, however, the CGC should behave like the wavefunctions 
of the Schrodinger equation (2.7). Namely, at j = m the solution is nodeless, i.e. all 
CGC ( - l ~ ~ - m ~ ( j l m l  j2m2bm) have the same sign; CGC with j = m + 1, m + 2 , .  . . oscillate 
and change their sign 1 , 2 , .  . . times. These properties of CGC are illustrated in figure 
2 which presents the values of the CGC (-l)m(lO, m, jO(l0, m )  as functions of m (the 
CGC were taken to be non-normalised; it was assumed that (10, lO,jO(lO, l o ) =  1). 

From the figure one can clearly see the oscillating character of the C G C ;  however, 
the node of the appropriate wavefunction is not always coincident with an integral or 
semi-integral value of m. Despite their oscillations, therefore, CGC are rarely vanishing 
exactly. For example, in the case shown in figure 2 only the CGC (10, m, 40110, m )  
have the non-trivial exact node at m = *9. From the physical viewpoint, however, the 
fact that the absolute value of the CGC is small in the region of sign reversal is more 
important than the exact vanishing of the CGC. This circumstance will result, for 
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4 

Figure 2. The (non-normalised) Clebsch-Gordan coefficients ( - l )”’ ( lO,  m, j 0110, m) as 
functions of m. 

example, in peculiar ‘beats’ of the probability of the transitions of multipolarity 
A = 1,2,  . . . between the levels bm) of term j (j >> 1) split in an electric, or crystal, or 
magnetic field. These properties must also be felt in the many-photon coherent 
transitions in the two-level Dicke-system, etc. 

Examine now the direct product of two unitary irreducible representations (UIR) 

belonging to positive discrete series of the SU(1, 1) group 

The same recurrence relation as for the SU(2) group is valid for the CGC of the 
SU(1, 1) group: 

but with m ,  2 j, + 1 ,  m2 kj2 + 1 ,  m 3 j + 1 ,  j 2 j ,  + j 2  + 1. By introducing the designations 

and only retaining in the left-hand side of (2.10) the terms not above second order 
with respect to l / m ,  and l /m2, we reduce (2.10) to the asymptotic form 

c(e = 0) = c(e = r / 2 )  = 0, (2.1 1) 

which is nothing other than an equation for the four-dimensional spherical function 
YLLlb(0) in the case of the 0 ( 2 , 2 )  group with L ,  = 2j, + 1 ,  L2 = 2j2 + 1, A = - j ( j  + l) ,  
L = 2j. From this it is seen that CGC of the form ( j ,  m, j2m2( j m )  in the above-mentioned 
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asymptotic limit must reduce to the Jacobi polynomial 

or to the Wigner D-function 

dj ,  + j 2  + i ,,I - j 2 (  ( mi - m2)/ 1 * 
Through the replacement W = (sin 0 cos 0)”’C, equation (2.1 1) reduces again to the 
Poschl-Teller equation (2.7) with A I  = 2j2 +;, A 2  = 2j, +f whose energy levels are given 
by the formula 

E = ( A l  + A 2 + 2 k + 2 ) 2 = ( 2 j 1  + 2 j , + 2 I ~ + 3 ) ~ = ( 2 j + l ) , .  
Hence 

j=j l+j ,+l  + k ,  k = 0 ,  1 , 2 , .  . .  . (2.12) 

Thereby, turning to the asymptotic limit m,,  m2+w at fixed j , ,  j,, m, m‘= m 1  - m2, 
we could have found the structure of the Clebsch-Gordan series (2.9), for a Kronecker 
product of two U I R  of positive discrete series, since each level of (2.12) is in correspon- 
dence with one of the terms of the series (2.9). It should be noted that, despite the 
asymptotic character of (2.7), its level spectrum must be in accurate correspondence 
with the Clebsch-Gordan series, since the structure of this series is independent of 
the values of m i ,  m2, i.e. is conserved also at high values of these numbers. 

The exact spectrum of eigenvalues A of the difference equation (2.10), like the 
energy spectrum of the Poschl-Teller potential, is discrete and  unlimited from above. 
This is the difference of the given result from the case of the SU(2) group. 

Bearing in mind the graphic technique, the connection between the Wigner tree 
for the SU( 1, 1) group and  the hyperspherical tree for hyperboloid harmonics (Smirnov 
and Shustov 1981) is shown in figure 3 .  The meaning of the graphs in figure 3 is the 
same as in figure 1 ; the branching 3 ( a )  reduces asymptotically to the branching 3(b),  
L l  = 2j, + 1, L2 = 2j2 + 1, L = 2j, (cos 0)’ = m i /  m ; at ji = j2 the branching 3(a )  turns into 
3(c). 

From the fact that CGC for the SU(2) group and CGC of the type of LYI’O D ’ 2 +  for 
the SU(1, 1) group satisfy Schrodinger equations of the same type whose potential 
terms become identical after the replacement 

M -1 
I - 2 ( j 1  + j 2  + m~ - 1112 + 11, J -I 

i - 2(ji  -j2 + MI + m2 - I), 

J,=f<-j, + j ,+m,  + m , - ~ ) ,  

J = j ,  

M 2  = iol +j,- m ,  + m, + l) ,  (2.13) 

M = j, +j, + 1 ,  

+ 

Figure 3. 
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it follows that relationships may be found between CGC of the SU(2) group and CGC 

for the positive discrete series of the SU(1, 1) group (within the phase factor) 

( j t m t j 2 m 2 b )  = (JIM,J2M2IJM) (2.14) 

where Ji,  M,  are related to j,, mi through (2.13). This result was obtained by a direct 
method by Rasmussen (1975) and Chacon et a1 (1975) on the basis of the complemen- 
tarity of the SU( 1, 1) group and the O(4) group in the space of symmetric representation 
of the Sp(8, R )  group. 

Examine now CGC for the direct product 

(2.15) 

which, according to Mukunda and Radhakrishnan (1974), contains the discrete series 
D", j,,, s j ~ j , , ,  (for j, 2 j2,  j,,, = j, - j2 - 1, jmi, = 0 or f for integral or half-integral 
values of j, -j2 respectively) and one of the principal series of the UIR D', j = - +  +iu,  
O S V < W .  

The recurrence relation (2.1) is valid for the CGC (jTm, j;m2)m) but now m I  2 j, + 1, 
m2 S -j2 - 1, m = m ,  + m2. Assuming that j, 2 j,, m ,  >> j , ,  lm21 >> j2, m ,  - lm21 >> j , ,  j,, j, 
introducing the designations (cosh e)'= m , / m ,  (sinh e)*= Im,l/m, C ( 6 )  = 
(j:m,j;m,~m) and retaining only the terms not above second order with respect to 
l / m ,  and l//m21 in the left-hand side of (2.1), we reduce the recurrence relation (2.1) 
to the asymptotic form 

C = 4AC. (2j, + 1)2 (2j, + 1)' 
(cosh 6)' (sinh 6)' 

- 1 
sinh 8 cosh 6 $( (2.16) 

Expression (2.16) is an equation for four-dimensional harmonics corresponding to the 
reduction 0 ( 2 , 2 )  =I O(2) x 0 ( 2 ) ,  i.e. to the branching 4(b) in figure 4. After the replace- 
ment WLL,L2(6) = (sinh 6 cosh 6)'"C, (2.16) takes the Schrodinger form 

(2.17) 

where A ,  = 2j, +f, A 2  = 2j2 ++, E = -(2j + 1)2, L ,  = 2j2 + 1, L2 = 2jl + 1 .  Obviously, the 
Schrodinger equation with the potential 

V(6)=  A , ( A ,  + l)/(sinh 0 ) ' - A 2 ( A 2 +  l)/(cosh 6)' 

shows both discrete (at A , >  A , ,  j, > j 2 )  and continuous ( j  = - +  +iu,  E = U' > 0) spectra 
of levels. The discrete levels will be in correspondence with the discrete series 0'' in 

Figure 4. 
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the expansion (2.15). We shall limit ourselves below to examination of the discrete 
part of the spectrum. The discrete level spectrum is known (Limic er a1 1966, 1967, 
Smirnov and Shustov 1981) to be given by the formula 

E = -(2j + I ) ~ ,  

where [c] is the integral part of c. 
Thus we can see again that, by studying the level spectrum of the asymptotic 

Schrodinger equation (2.16), we find the spectrum of the eigenvalues of the difference 
equation (2.1) exactly and determine the structure of the Clebsch-Gordan series for 
the UIR of the SU(1, 1) group. Knowing the solutions for (2.16) (Smirnov and Shustov 
1981), we may state that the CGC ( j :ml j ;m2b 'm)  are proportional to the Jacobi 
polynomials with non-standard indices 

j =jl - j 2 -  1 - k, k = 0 ,  1, . . . , [ j l - j 2 -  11, (2.18) 

( - (2 j2+1 ) . 2J ,  + I )  P,-,,-,2-I ((ml - m2)/(m1 +m2)) .  

These orthogonal polynomials are determined at the interval (1, +as) and are featured 
by the fact that the number of them is finite, i.e. they fail to form a complete system, 
but all the usual properties of orthogonal polynomials (the Rodrigues formula, the 
explicit form of the normalisation factor, the properties of roots, etc) are applicable 
to them. 

The same method may be used to analyse CGC for the Kronecker products of UIR 

of other types. This will be the subject of our subsequent work. Now we shall obtain 
explicit expressions for CGC of the SU(2) and SU(1, 1) groups through the Hahn 
polynomials by strictly solving the difference equation (2.1). 

3. Clebsch-Gordan coefficients and Hahn polynomials 

As was noted above, the CGC of the SU(2) group satisfy the difference equation (2.1). 
The expression of them through the Hahn polynomials is of the form (Nikiforov and 
Suslov 1982, Nikiforov et a1 1983a) 

( - 1 ) l I - m l  

d,-m 
( j 2  - M 2 ,  j ,  + j 2  - + 1 1 I/2 ( m - m ' , m + m ' )  

(j"2m2IM = Ep(j,-m2)1 h j - m  

( m  3 m ' a  0, m' = j ,  - j 2 )  (3.1) 

where p ( x )  and d ,  are respectively the weight and norm of the polynomials h',"@'(x, N )  
(see appendix 2). Besides that, the CGC of SU(2) may be expressed through the dual 
Hahn polynomials w , ( p )  = w r ) ( p ,  a, b ) ,  p = p ( x )  = x(x + 1): 

( m a m ' z O , m ' = j  I - J 2 ) .  (3.2) 

Here p ( x )  and d ,  are respectively the weight and norm of the polynomials w , ( p )  (see 
appendix 2). 

Let us obtain now relations analogous to (3.1) and (3.2) for the CGC of the SU( 1 ,  1) 
group in the case of a Kronecker product of two UIR belonging to the discrete positive 
series. We shall seek for the corresponding coefficients as solutions of the difference 
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equation (2.10). The substitution 

( j , m ~ ~ m ~ I j m ) = [ ( m ~  +jl)!(m2 +j2)!/(ml -jl - 1>!(m2-j2- l)!I”z~mlm2 

leads to the equation 

( m ,  +jl + 1)(mz-j2- l)~mi+l,mz-l +(mi -ji - l)(m2+j2 + l ) ~ m i - ~ , m z + ~  

=[jl(jl +l )+ j20 ’2+1) - j ( j+1)+2mim2lumlm, .  (3.3) 

The normalised solution for (3.3) is of the form 

(3.4) (21, + I  A,+ 1 )  
~ m i m 2 = ( l / d j - , i - , z - ~ ) ~ , - , i - j z - ~  (mZ-jz-1; m - j ,  - j 2 -  11, 

where d, is a norm of the Hahn polynomial h?3P)(~,  N ) .  

D’YO D’; through the Hahn polynomials 

( j l m l j 2 m z l j m ) = ( [ p ( m 2 - j 2 -  1)l”2/d,-,,-,z-l 

The weight p(x) and norm d, of the polynomials h‘,”,P)(~, N )  are presented in appendix 
2. 

Using the relation between the Hahn polynomials h?,P’(~, N )  and the dual Hahn 
polynomials w‘,c’(p; a, b) ,  p = x(x + 1) (Karlin and McGregor 1961): 

As a result, we find the representation of the CGC of the SU(1, 1) group in the case 

}h(211+1,212+1) ( m 2 - j 2 -  1 ;  m -j l  - j z -  1). 
(3.5) 

k !( N - k - l ) ! r (p  + n + 1)  
n ! (N-  n - l)!r(p + k + l )  

h j P . P ’ ( k ,  N ) = ( - l ) k - ”  

(3.6) 
we obtain from (3.5) 

where p(x) and d, are respectively the weight and norm of the polynomials w,@) (see 
appendix 2). 

The expression of the CGC of the SU(2) and SU( 1, 1) groups in terms of the Hahn 
polynomials makes it possible to study these quantities using the standard methods 
developed in the theory of orthogonal polynomials. We may indicate, for example, 
the asymptotic formulae of the second order of accuracy. Using the asymptotics of 
the Hahn polynomials h?*@)(x, N )  (Nikiforov et a1 1983b) 

h‘RsP)[$*(1 + s ) - f ( P + l ) ,  N ] = f i n [ P I P . B ’ ( s ) + 0 ( f i 7 - 2 ) ] ,  

fi = N +(a +P)/2, N + W ,  (3.8) 

for the CGC of the SU(2) group, we get the relation (Nikiforov et a1 1983b) 

(3.9) 
m ,  - mz 

j ,  +j2+1’ 
cos p = ( j l m l  j2m21jm)=== (- 1)jzcm2 

which. is valid at j ,  + j 2  + 1 >> 1, m === m ‘ -  1 ( m  3 m ‘ 3  0, m’ = j ,  - j2 ) .  
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Similarly, we obtain from (3.5) and (3.8) for the CGC of the SU(1, 1) group at 
m >>j-  1:  

The functions dA,@) entering (3.9) and (3.10) are determined in the same way as in 
Varshalovich et a1 (1975). 

4. The Wigner 6j-symbols and the Racah polynomials 

As was shown by Wilson (1980), Smorodinsky and Suslov (1982b), Nikiforov et a1 
(1983a, b) and Suslov (1983) the Wigner 6j-symbols for the SU(2) group may be 
expressed in terms of the Racah polynomials which are discrete analogues of the Jacobi 
polynomials on a quadratic grid (Nikiforov er a1 1982). The formula corresponding 
to the standardisation adopted here for the Racah polynomials ~ ? . ~ ' ( p ,  a, b )  is of the 
form (Nikiforov et a1 1983a, b) 

where p ( x )  and d, are respectively the weight and norm of the polynomials p ,  a, b )  
(see appendix 2), m = j, - j 2 ,  m' = j, - j ;  j, 2 j ,  j ,  2 j 3  L j 2 ,  j ,  +j  > j ,  + j 2 .  

Examined below will be the 6j-symbols corresponding to the recoupling of the 
Kronecker product of three U I R  belonging to the discrete positive series IYTO LYlO IYl 
of the SU(1, 1) group. Since these quantities differ from the T-coefficients in the 
tree-graph method for hyperspherical harmonics by a phase factor only (Smirnov and 
Shitikova 1977) it will be sufficient to consider the T-coefficients. Using the results of 
Kildyushov (1972), we may obtain 

(4.2) 

where p ( x )  and d, are respectively the weight and norm of the Racah polynomials 

Let us mention the asymptotic formulae of the second order of accuracy for the 
6j-symbols. Using the asymptotic representation of the Racah polynomials (Nikiforov 
et a1 1983b) 

(2Jl + I  .2J2+1) 
x u j I2 - j I - j~ -~  iL3(jZ3 + 1): j 2  + j 3  + 1 , j  -jll ,  

vJp.P'(p, a, b). 

~ ' , " * ~ ) ( p ;  a, b ) = ( G 2 ) " [ P J p 9 P ' ( s ) + O ( G - 2 ) ] ,  

G2=(b+a/2)2-(u- /3/2)2,  b + a ,  (4.3) 
where 

p = x(x + 1) = - t +(a - p/2)2( 1 - s)/2 + ( b  + (Y/2),( 1 + s)/2, 
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we find for the 6j-symbols of the SU(2) group (Nikiforov er af 1983b) 

Here (see figure 5) 

Figure 5. 

In the case of the SU( 1, 1) group, the analogous formula is of the form 

j >>j,  - j 2  -j12-J3 - 1, 

where (see figure 6) 

(4.4) 

Figure 6. 

The 6j-symbols of the SU(2) group are known to coincide with the transformation 
brackets between the T, V and U bases of the SU(3) group (see e.g. Pluhar e? a1 1981). 
This circumstance makes it possible to find the group theoretical properties of the 
Racah polynomials. I t  has appeared that the action of the operators T,, U,, and V, 
on the corresponding Gelfand-Tsetlin bases of the SU(3) group is equivalent to the 
calculation of the first derivative for the given polynomials. The operators T 2 ,  U' and 
V 2  lead to a difference equation, to a three-term recurrence relation, etc. 

The asymptotic properties of the 6j-symbols may also be analysed by turning from 
difference equations to differential ones, after the analogy of Q 2. The same method 



2168 CGC and Racah coeflcients for SU(2)  and SU(  1 , l )  

may be used to examine the arbitrary three-term recurrence relations. To make the 
discussion more complete, we shall illustrate the method additionally by two physically 
interesting examples, namely the Hamiltonian of an asymmetric top and the operator 

of Bargmann and Moshinsky (1961). 

5. The asymptotic properties of the Hamiltonian of an asymmetric top and the 
Bargmann-Moshinsky operator in the SU(3) scheme 

The Hamiltonian of an asymmetric top is of the form (Bohr and Mottelson 1974) 

H = A,$: +A&: +A& (5.1) 

where Ai = h2/21i, i = 1,2,3 (Zi are the main momenta of inertia). 
The matrix of this Hamiltonian in the eigenfunction basis of a symmetrical top 

2 1/2D8* IfMW = [(29 + 1)/8.rr 1 M d a ,  P, Y) 

(a, p, y are the Eulerian angles, K is the projection of the angular momentum onto 
axis 3) is three-diagonal: 

HKK = W (9 + 1 ) + D[3 K - 9(f + 1 11, 
HK*Z,K  = F [ ( 9 r K ) ( f * K  + l ) ( f T K - l ) ( f * K  +2)I’”, (5.2) 
B = f ( A ,  +A2+A3),  D =d(2A3 -AI - Az), F=$(Al-A2).  

As a result, for the coefficients CK of the expansion of the wavefunction of an 
asymmetric top in eigenfunctions of a symmetric top 

9 

K = - 9  
lfW= c CKI” 

we obtain the three-term recurrence relation 

(5.3) 

H K + z , K C K + ~ + ( H K K  - - E ) C K  + H K - I , K ~ K - ~ = ~ .  (5.4) 

The asymptotic properties of the eigenvalues of energy E and wavefunctions of an 
asymmetric top at f >> 1 may be obtained by turning from the difference equations 
(5.4) to a differential equation of second order, similarly to the procedure used for CGC. 

It should be noted that the set of equations (5.4) is actually broken into two subsets 
with K = 8; - l , f  - 3, . . . and K = f ,  f - 2 , B  - 4, . . . (for integral (half-integral) f the 
first subset contains f + 1 (9 +!) equations, and the second one contains f (f +;) 
equations). 

In the extreme case of large rotational angular momenta f the discrete variable 
K, which varies with step AK = 2, will be treated as continuous. We shall be interested 
in the lowest levels with a given f whose wavefunctions in the K representation 
CK = C ( K )  reverse its sign a few times throughout the total interval of variations of 
the variable -2 s K s f .  In these states the wavefunction is mainly concentrated near 
small values of K (i.e. ICK I << 1 at IK 1-2). 

To turn from the difference equations (5.4) to a differential equation, we shall use 
the Taylor-series expansion of the coefficients CK*2  near the point K in powers I/$, 
and the Taylor-series expansion of the matrix elements HK+2,K  in powers l / n  and 
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1 /( N - n )  ( N  = 29, n = 9 - K >> 1 and N - n = 8; + K >> 1) to within the terms of second 
order. After replacing the variable K / 8 ;  = sin 8, we get the following equation for the 
function w ( e )  = (cos e)'/2c: 

- (A2-AI)  d2 W/de2 +U(%; + 1)A, +(A, -A, )92  sin2 81 W = EW ( 5 . 5 )  

with boundary condition W(*7r/2) = 0. In the limiting case 8<< 1 equation ( 5 . 5 )  takes 
the form of the Schrodinger equation for a one-dimensional harmonic oscillator with 
the frequency 

fiw = 29[(A3 - Al)(A2-Al)]1'2 (5.6) 

(the same result may be obtained by expanding the left-hand side of (5.4) in powers 
1/8; to within the terms of third order). Therefore the spectrum of the lowest levels 
of an asymmetric top to a harmonic approximation is of the form 

E',')= A18;(9 + 1) + ( n  +$)fiw (5.7a) 

(we suppose A, < A, < A,). 
A similar expression was obtained, for example, by Bohr and Mottelson (1974) 

using the boson expansion. 
Equation ( 5 . 5 )  permits one to make this result more accurate. The potential term 

in the Schrodinger equation ( 5 . 5 )  differs from a parabola and, therefore, the level 
spectrum in ( 5 . 5 )  is not equidistant. This deviation may be made allowance for by 
replacing the potential V = 6 sin2 8 with the modifigd Poschl-Teller potential A( 1 - 
cosh-2(cY8)) which coincides at A = 26 and a = 1/J2  with the potential V to within 
the terms proportional to 8'. Since the level spectrum for the modified Poschl-Teller 
potential is known (Fliigge 1971), we obtain to this approximation 

n A &  n = I  -A2)(n +$12. (5.8a) & ( I )  = &(O)  " + A & " ,  

By choosing the axis with the maximum moment of inertia (axis 1 in our case) to 
be the quantisation axis, we may obtain formulae analogous to (5.7aH5.8a) for the 
levels with the maximum energy at a given 8; by merely replacing A, e= A, and by 
changing sign of the second term in ( 5 . 7 ~ )  and (5.8a): 

E:') = A38;(9 + 1) - ( n  +f)28;[(A3 - A2)(A3 - 
& ( I )  = &(') 

(5.76) 

n A&,, =;(A,-A,)(n +$)'. (5.86) n + A & , ,  

Table 1 presents the results of the calculations of the level energies of an asymmetric 
top at 8; = 18 and A I = f, A, = 1, A, = 1. The values of E:" and E ( , )  presented in table 
1 have been calculated using ( 5 . 7 ~ )  and (5.8a) respectively for the lower part of the 
spectrum and (5.76) and (5.86) respectively for the upper part of the spectrum. The 
values of E,  have been obtained by numerical diagonalisation of the matrix (5.2) (the 
band with K = f - 1, f - 3 , .  . .). From table 1 one can easily see that the values of 
E;') and E',') are different from the exact energy values of five or six lowest or highest 
levels of an asymmetric top with 8; = 18 by not more than 5 % .  In our approach 
there is the degeneracy of the bands with K =f  - 1, 8; - 3 , .  . . and K =8;, 8; -2,  
f - 4, . . . which is confirmed by exact results to within a good accuracy for several 
highest and lowest levels. 

Figure 7 shows several wavefunctions of an asymmetric top. It is seen that in the 
case of lowest (highest) levels they are actually concentrated in the region of small K ,  
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Table 1. The level spectrum of an asymmetric top (9 = 18, A ,  = $, A, = 1, A3 =$; the band 
with K =9 - 1, 9 - 3 , .  . .). 

E(ol  E(," E* E LO) E ( , ' )  E n  

183.8 183.6 183.7 343.3 368.7 376.1 
2 10.0 208. I 208.3 369.4 388.1 392.7 
236. I 231.5 23 I .4 395.6 408.6 41 1.0 

288.4 275.4 273.0 447.9 452.5 452.5 
314.6 295.9 291.3 474.0 475.6 475.6 
340.8 315.3 307.8 500.2 500.4 500.3 

262.3 254.0 253.1 421.7 430.0 43 1 .o 

322 0 
335.5 

... ... 348.2 
36 1 .7 

I t  0 0  1 

t 
-18 -12 -6 0 6 12 18 

K 

Figure 7. The exact values of the coefficients C $ )  for the lowest levels of the asymmetric 
top (2 = 18, A ,  =+, A, = $, A, = I )  with n = 0 (x), n = 1 ( . ) and n = 4 (0). The asymptotical 
harmonic oscillator wavefunctions are represented by full curves. K = 9 - 1,9 - 3, . . . . 

have a definite parity with respect to the replacement K + - K and their form is similar 
to the form of the lowest eigenfunctions of the harmonic oscillator. 

Similarly to the above, we may analyse the asymptotic properties of the Bargmann- 
Moshinsky operator 0 (Bargmann and Moshinsky 1961) in the SU(3) scheme: 

n = ( [ L  x LIZ . Q )  ( 5 . 9 )  

which has been studied poorly up to now. In  (5.9), L is the orbital angular momentum 
of the system; Q is the quadrupole momentum operator (Elliott 1958), the generator 
of the SU(3) group. We shall seek for its eigenfunctions qu satisfying the condition 

nq, = uqw (5.10) 

in the form of expansion in the projected Elliott basis I (Ap)LMK)  = P ~ K x K  for the 
irreducible representation ( A p )  of the SU(3) group ( P h K  is the projecting operator; 
x K  is the 'internal' function of the system): 

qu=c cKI(ApILMK) .  (5.1 1) 
K 
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The following expression is valid (Filippov et al 1981): 

WWLMK) = C aKtK I(WLMK') 
K ' =  K , K  i 2  

where 

2171 

(5.12) 

K I K K  = - f [ l  S f ( 2 A  +p)][L(L+l)-3K2],  

= - i [ ( p  7 K ) ( p  * K +2)(L* K +2)(L+K - l)(L* K +l) (LT K)]'". (5.13) 

Therefore, we get the following difference equation for CK : 

- w )  CK + a K  + 2 , K C K  +2 = 0. n K  - 2 , K C K  -2 + (5.14) 

The similarity ofthese relations to (5.3), (5.4) is obvious. The only difference is that K 
takes on only values K = p, p - 2, . . . , - p  with I K I s L. Besides that, since the relation 

(5.15) 

is valid for the Elliott basis, we should only be interested in such solutions of (5.14) 
which show a definite parity with respect to the replacement K + - K,  i.e. the condition 

c, = ( - l )L+Ac-K (5.16) 

must be satisfied. 
Examine now the case A, p, L >> 1. We shall be interested in the lowest eigenvalues 

w. In this case the coefficients C, satisfying the conditions K K L and K <c p are 
dominating in the corresponding wavefunctions. Then the left-hand side of the recur- 
rence relation (5.14) may be expanded into power series with respect to K / L  and K / p  
retaining the terms of second order. As a result we get the Schrodinger equation with 
the potential of the harmonic oscillator whose solutions are 

C$'= N e x p ( - t 2  K2/2)Hn(5K),  

I(Ap)LM - K )  = (-l)L+Al(Ap)LMK) 

(5.17) 

(where H,,(x)  is the Hermite polynomial) with eigenvalues 

U;')= Go+(n +f)H, ,  

GO=-L(L+l)[l  + f p + + f h  +(p+1) /2L(L+l )+(p-1 ) /4p2] ,  

H , = 2 { L ( L +  l ) (p  + 1)[2+A + p  + L ( L +  l ) (p  - 1)/4p2]}"2. (5.18) 

From the solutions, those showing the symmetry property (5.16) must be selected. 
The given approximation describes, generally speaking, only the lowest part of the 

spectrum of the eigenvalues w for the irreducible representation ( h p )  of the SU(3) 
group. The highest part of the spectrum for this representation may be obtained from 
the lowest part of the w spectrum for the conjugated irreducible representation ( p h )  
by the sign inversion 

~ ( h p )  = -U(@). (5.19) 

The approximation (5.18) may be made more accurate by expanding (5.14) to within 
the terms of third order in powers K / L  and K / p .  Besides that, at p > L the matrix 
elements 12K=Z.K in (5.14) may be expanded in powers 1 / ( L +  K),  l / (L-  K),  K / p  and 
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l / p .  As a result, we get the Schrodinger equation with a potential of the form 
V =  p sin’ 0 - g sin4 0 (the meaning of 0 is the same as in (5.5)). By replacing the 
potential by the modified Poschl-Teller potential 

”{ P +39 1 -cosh-’[ (?)“’0]] 

which coincides with V to within the terms proportional to 05, we may also obtain 
the spectrum of w which differs from the equidistant spectrum and is more accurate 
than (5.18): 

w!,’)= G, +(n +$)HI +Awn,  

GI = - L ( L  + 1)(1 +$p + $ A )  + L 2 / 4 p ,  HI = 2 ( p  + 1)& 

Awn = - ( n  +f)’(p + l)@ +39)/2p, 

p = - ( 2 + h + l r . + -  L’ “ ’ - 1 ) .  g =  L4 

P + 1  4P 4 P b  + 1)‘ 
(5.20) 

Presented in table 2 are the results of calculating the eigenvalues of w for ( A p )  = 
(22 ,  18) and L = 18. The values of on have been obtained by numerical diagonalisation 
of the matrix (5.13). For the lower part of the spectrum the values of and U‘,“ 

have been calculated by (5.18) and (5 .20)  respectively; for the upper part ofthe spectrum 
the values of CO(,’) and wi”’ have been obtained by the sign inversion (5.19) of the 
eigenvalues of R calculated by (5.18) and (5 .20)  for the conjugated irreducible rep- 
resentation (Ap) = ( 1  8 , 2 2 ) .  

Tnble2. Eigenvalues w of the Bargmann-Moshinsky operator R ((Ap)=(22, la), L= 18). 

-6418 -64 I8 -6424 
-4220 -435 I -4458 
-2022 -2383 -2801 

- I466 
-578.6 

... ... + I  11.0 
I292 

2029 2445 2823 
4427 4579 4670 
6827 6827 6830 

Obviously the accuracy of (5.18) and (5 .20)  is not high, but these formulae give us 
the correct impression concerning the structure of the spectrum of R,  
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Appendix 1. The connection of D-functions for the SU(1,l) group with Meixner 
polynomials 

The generalised spherical harmonics of the SU(2) group may be expressed through 
the Kravchuk polynomials (Koornwinder 1982). Therefore, the unitarity property of 
the d-functions of the SU(2) group is equivalent to the orthogonality property of the 
Kravchuk polynomials on a discrete set of points. 

The generalised spherical harmonics (the Bargmann functions) in the case of the 
discrete positive series 0" of the SU(1, 1)  group (Barut and Wilson 1976) 

) "'( tanh f)  '+" (- 1 ) n ' - j -  I ( ( n  +j)!(n'+j)!  
(2j + l ) !  ( n  - j -  l)!(n'-j- l ) !  V',,,(P) = 

) (ALl)  
sinh2( P / 2) 

~ ( s i n h f ) - ' J - ~ F (  - n + J + l , - n f + j + 1 , 2 j + 2 ,  - 

are closely related to the Meixner polynomials m'ny'(x, p ) :  

In this case the unitarity of the Bargmann functions 

'c" V',,@) V',.,,,(P) = s,,., 
n ' = j + l  

is equivalent to the orthogonality property of the Meixner polynomials 

m'ny)(k, p)m(nr)(k, p ) p ( k )  = di8,,,3 
k = O  

where 

(A1.2) 

(A1.3) 

(A1.4) 

Appendix 2. The standardisation of the Racah and Hahn polynomials 

For information, we shall mention some properties of the Racah and Hahn polynomials 
(Karlin and McGregor 1961, Nikiforov et a1 1982, 1983b). 

The Racah polynomials and the dual Hahn polynomials are orthogonal on a 
quadratic grid 

Y Yn@i)Yn,@i)PiApi-l/2 = disnn,, (A2.1) 
i = a  

where 
p i  = i ( i  + l), A ~ ~ - , / ~ = 2 i + l ,  Pi = ~ ( i > *  

The values of the weight p ( x )  and of the squared norm dz are presented in table 3 
which shows the values of the first coefficient a,, in the explicit form of these polynomials 

(A2.2) y , ( p )  = a,p" + b,,p"-l+ . . . . 
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Table 3. Standardisation of the Racah polynomials U ( R . ~ ' (  p ,  a, b )  and Hahn polynomials 
h y , P ' ( x ,  N ) ,  w y ) ( p ,  a, b ) .  

r ( b  + a  - x ) r ( b  + a  + X  + 1 )  

T(b  -x)T( b + X  + I )  P ( X )  x x[T( b -x)r (  b + X  + I)]-' 

( - i < a s b - l ;  a > - l ;  ( - i < a s b -  I ;  / c l <  a + I )  

- I  < p  < Z O + l )  

a, ( l / n ! ) ( a  + p + n  + I ) .  I / n !  

r ( a  + n  + i)r(p + R  + I )  ua + n + I )r(p + n + I )  T(a + c  + n + I )  
( a  + p + Z n + l ) n ! T ( a  + p + n + l )  (a + p  + 2 n  + I ) n ! r ( a  + p  + n  + I )  n ! ( b - a  - n -  l ) ! T ( b - c - n )  d t  

( b  - a + a  + p  + n + I)T(a + b + a + n + I )  T ( a  + p  + n  + N + 1 )  

( N - n -  I ) !  
X X 

( b  - a - n - I)!T(a + b - p  - n )  

By setting the values p ( x )  and a,,, we determine the polynomials U Y * ~ ) ( ~ )  and w n ( p )  
unambiguously. 

The Hahn polynomials are orthogonal on a linear grid 

(A2.3) 

The values of p ( x ) ,  d ;  and a,, for these polynomials are also presented in table 3 .  

w',c'@; a, b), p = x(x + 1) as (Karlin and  McGregor 1961) 
The Hahn polynomials h',",@)(x, N )  are related to the dual Hahn polynomials 

k ! ( N  - k -  l)r(p + n  + 1) 
n ! ( N  - n - i)!r(p + k + 1 )  

hY3"(k, N ) z ( - ~ ) ~ - "  

LY + p  LY + p  
' 2 ' 2  

( k , n = O ,  1 , . . . ,  N - 1 ) .  (A2.4) 
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